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Summary
Spherical harmonics are widely used to describe the struc-
ture of the Earth’s gravity field. When detailed features of the 
Earth’s gravity field are required one may be confronted with 
numerical problems of spherical harmonics. These problems 
can be treated by numerical and algebraic methods. Extend-
ing the range of real numbers on computer is preferred in 
numerical methods. This can be achieved by choosing a proper 
standard floating point arithmetic format or by extended-
range arithmetic and arbitrary precision libraries. In algebraic 
methods the range of the magnitudes of the spherical har-
monics is reduced by algebraic manipulations. Based on the 
algebraic methods normalized and scaled equivalents of the 
spherical harmonics can be derived.
In the present contribution numerical and algebraic methods 
avoiding the numerical problems of the spherical harmonics 
are discussed. Limits of the numerical and algebraic methods 
are studied in a numerical experiment. It is shown that cur-
rent computer facilities and simple algebraic manipulations 
allow evaluation of the spherical harmonic expansions above 
degree and order 20000.

Zusammenfassung
In vielen Anwendungen ist es gebräuchlich, das Erdschwere­
feld in eine Kugelfunktionsreihe zu entwickeln. Sobald jedoch 
hochfrequente Strukturen dargestellt werden sollen, kann es 
zu numerischen Instabilitäten bei der Berechnung der Kugel­
funktionen kommen. Zur Bewältigung dieser Probleme stehen 
sowohl numerische als auch mathematische Methoden zur 
Verfügung. Auf numerischer Seite wird üblicherweise ver­
sucht, die Bandbreite der darstellbaren reellen Zahlen zu er­
höhen. Hierzu wählt man entweder ein entsprechendes Stan­
dardformat für die Darstellung von Fließkommazahlen, oder 
man verwendet eine spezielle Bibliothek für Darstellungen mit 
beliebiger Genauigkeit. Im Rahmen der mathematischen Me­
thoden wird versucht, den Wertebereich der Kugelfunktionen 
auf algebraische Weise einzuschränken, indem normierte bzw. 
skalierte Varianten der ursprünglichen Funktionen verwendet 
werden.
Im vorliegenden Beitrag werden bestehende numerische und 
mathematische Methoden zur Vermeidung numerischer Insta­
bilitäten bei der Berechnung von Kugelfunktionen diskutiert. 
Die jeweiligen Beschränkungen werden anhand numerischer 
Experimente dargelegt. Damit lässt sich zeigen, dass derzeit 
verfügbare rechentechnische Methoden und einfache mathe­
matische Manipulationen eine stabile Berechnung der Kugel­
funktionsentwicklungen bis über Grad und Ordnung 20000 
hinaus ermöglichen.

Keywords: Programming language C, Floating point 
arithmetic

1	 Introduction

Scientific disciplines dealing with computational prob­
lems have been affected by the progress of personal 
computers. With proper hardware and software facilities, 
formerly scientific tasks can now be solved routinely. 
Moreover, improvement and development of new com­
putational methods is directly stimulated. In spite of the 
advantages emerging from the exploitation of personal 
computers, limitations have to be considered. These are 
mainly introduced by the finite computer representation 
of real numbers according to floating point arithmetic 
(FPA). Therefore attention should be paid to the stability 
of the computational algorithms in order to avoid un­
expected errors occurring from underflow or overflow 
problems.

Spherical harmonic expansions (SHEs) are of particu­
lar interest in many theoretical and practical applications. 
One is confronted with this relatively simple mathemati­
cal tool in a variety of problems and at different spatial 
scales. For example, spherical harmonics are employed to 
study particles in quantum chemistry, geomagnetic field, 
and cosmic electromagnetic radiation of the universe. In 
addition spherical harmonics are important when image 
recognition in computer graphics is performed. In geo­
desy, SHEs are widely used in the determination of the 
Earth’s gravity field. Products of geopotential coefficients 
defining physical properties of the Earth and mathemati­
cally defined spherical harmonics are simply added up 
to a maximum degree of the expansion. In this way, the 
gravitational potential and its functionals can be ap­
proximated. However, when a more detailed description 
of the gravity field is required higher degree terms of 
the SHEs have to be taken into account. In this case, one 
is confronted with numerical problems which originate 
due to the colatitude dependent part of the spherical har­
monics, i. e. the associated Legendre’s functions of the 
first kind (ALFs). Depending on the spherical colatitude, 
degree and order of the SHEs magnitudes of the ALFs 
can reach several hundreds or even thousands of orders 
of magnitude.

Generally numerical problems of the spherical har­
monics can be treated by two distinct methods. Choice 
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of an extended computer representation of real numbers 
is preferred in the first method. In this way spherical 
harmonics should be represented on computer for all of 
their magnitudes. Modern representation of real numbers 
given by FPA standard can be followed in which single, 
double and quadruple formats are specified. Alterna­
tively extended-range arithmetic or arbitrary precision  
libraries can be used. In the second method the mag­
nitude range of the spherical harmonics is reduced by 
algebraic manipulations. This mathematical approach is 
important when bounds of the most precise FPA format 
are overrun. Spherical harmonics are multiplied by prop­
er factors according to their degree, order and spherical 
colatitude. Based on the mathematical principles normal­
ized and scaled equivalents of the spherical harmonics 
can be introduced.

In the present contribution numerical and algebraic 
methods to avoid numerical problems with spherical har­
monics are demonstrated. In section 2, SHE of the gravi­
tational potential is given and the origin of the numerical 
problems of the spherical harmonics is identified. FPA 
standards and representation of real numbers on comput­
ers are described in section 3. Numerical methods avoid­
ing numerical problems of the spherical harmonics are 
discussed as well. In section 4 algebraic methods based 
on normalizing and scaling the spherical harmonics are 
introduced. Numerical experiments in which limits of the 
numerical and algebraic methods have been validated 
can be found in section 5. In the conclusions the signifi­
cance of the present contribution and important facts are 
mentioned.

2	 Definition of the problem

The gravitational potential representing a fundamental 
scalar quantity of the Earth’s gravity field can be expand­
ed in a series of spherical harmonics. In the same manner 
its functionals, such as geoid heights, gravity anomalies, 
gravity disturbances, deflections of the vertical and grav­
itational tensor components, can be expressed. Due to 
this versatility SHEs are widely used in geodetic applica­
tions. Recently the International Centre for Global Earth 
Models (ICGEM, http://icgem.gfz-potsdam.de/ICGEM) 
has been established by the International Association of 
Geodesy which directly stimulates even broader usage of 
the SHEs.

Derivation of the gravitational potential in the series of 
spherical harmonics can be found in classical textbooks 
(Vaníček and Krakiwsky 1982, Hofmann-Wellenhof and 
Moritz 2005). It is not our purpose to recapitulate this 
derivation. Rather the definition of individual variables 
and parameters of the final formula is given in this sec­
tion. This section is also considered as a starting point 
from which the origin of the numerical problems of the 
spherical harmonics will be identified. From the mathe­

matical point of view the final formula for the gravita­
tional potential in the series of the spherical harmonics 
represents a double summation over degree n and order m 
of the following form (Hofmann-Wellenhof and Moritz 
2005, Eq. 2‑78)
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In Eq. (1), (r, θ, λ) is the triplet of the spherical coordi­
nates (geocentric radius, spherical colatitude and spheri­
cal longitude), GM is the product of the Newtonian 
gravitational constant and the Earth’s mass including 
oceans and atmosphere, a represents the semi-major axis 
of a reference ellipsoid, Cn,m , Sn,m are the dimensionless 
geopotential coefficients and Rn,m (θ, λ), Tn,m (θ, λ) are the 
surface spherical harmonics. An important parameter in 
Eq. (1) is the maximum degree of the SHE, Nmax . Its value 
determines the maximum spatial resolution of the Earth’s 
gravity field by Rπ / Nmax where R is the radius of the 
Earth.

Computation of the gravitational potential at an arbi­
trary point defined by spherical coordinates (an evalua­
tion point) is possible when all variables and parameters 
in Eq. (1) are known. Geopotential coefficients define 
physical properties of the Earth and their values are con­
stant regardless of the position of an evaluation point. 
The set of geopotential coefficients up to degree and or­
der Nmax represents a global gravity model (GGM) includ­
ing GM and a. A single GGM is a text file which contains 
numbers arranged by degree and order. Several GGMs 
are publicly available at the ICGEM webpage. In contrast 
to the geopotential coefficients, the spherical harmonics 
are mathematically defined and depend on the position 
of an evaluation point. Standard definition of the surface 
spherical harmonics is based on the separation into the 
spherical colatitude and longitude dependent parts when 
(Hofmann-Wellenhof and Moritz 2005, Eq. 1‑50)

( ) ( ), ,, cosn m n mR P m=θ λ θ λ ,	 (2)

( ) ( ), ,, sinn m n mT P m=θ λ θ λ .	 (3)

In Eqs. (2) and (3), the new functions Pn,m (θ) stand for the 
ALFs for which differential and integral definitions have 
been introduced (Ferrers 1877, Hobson 1965, Abramo­
witz and Stegun 1972, Hofmann-Wellenhof and Moritz 
2005). Recursive formulae when the actual ALF is com­
puted from the previous ones are especially convenient 
for the SHEs. Several recursion schemes have been pro­
posed (Hobson 1965, Belikov 1991, Holmes and Feath­
erstone 2002a, Holmes 2003). In this study we consider 
only one recursion scheme defined by the following set 
of Eqs. (Abramowitz and Stegun 1972)
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( ) ( )0,0 1,11, sinP P u= = =θ θ θ ,	 (4)

( ) ( ), 1, 1(2 1) , 1m m m mP m u P m− −= − ∀ >θ θ  ,	 (5)
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(6)

where t = cos θ . Evaluation of the ALFs is initiated by the 
start values in Eq. (4). When m > 1 sectorial (i. e. n = m) 
ALFs are evaluated by Eq. (5) based on the previous sec­
torial ALF. Sectorial ALFs are computed in the direction 
of the diagonal, see Fig. 1. Zonal (i. e. n = 0) and tesseral 
(i. e. n ≠ m ∧ n ≠ 0) ALFs are generated by Eq. (6). These 
require sectorial ALFs of the same order when n = m + 1, 
otherwise previous two ALFs of the same order have to 
be given. Evidently zonal and tesseral ALFs of the same 
order are computed in the direction of a row in Fig. 1. 
Spherical harmonics are therefore completely defined by 
Eqs. (2) – (6). Now all parameters and variables in Eq. (1) 
are given.

In Eqs. (4) – (6), numerical problems of the spherical 
harmonics have been indirectly introduced. A simple 
analysis of Eq. (5) shows that Pm,m (u = 1) = (2m –1)!! for 
evaluation points in the equatorial plane. It is well known 
that the evaluation of factorials is connected with nu­
merical problems because of their large range of mag­
nitudes. A similar behavior can be observed in the case 

of the ALFs, see Fig. 2. For a maximum degree of the 
SHE Nmax = 100 ALFs cover almost 200 orders of magni­
tude. ALFs become larger with increasing degree and or­
der for each spherical colatitude. It is also evident that the 
range of magnitude is increasing towards the equatorial 
plane even though there are only slight differences for 
colatitudes between 60° and 90°. At the equator itself the 
sectorial ALFs are predominant. Otherwise a special pat­
tern is visible at the equator caused by the fact that most 
tesseral ALFs are equal to zero when the logarithm is not 
defined. On the other hand sectorial and tesseral ALFs 
are equal to zero at the poles. In the sequel the above 

Fig. 1: Diagram for the computation of the ALFs by 
recursive formulae

Fig. 2: 
Graphical repre­
sentation of 

( )10 ,log n mP θ  . 
Selected spherical 
colatitudes are  
depicted in each 
panel. Magnitude  
is indicated by  
color scale.
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mentioned facts will be considered as numerical prob­
lems of the spherical harmonics. In geodesy numerical 
problems of the spherical harmonics have been treated 
according to requirements. Especially when a significant 
refinement of the maximum spatial resolution of the 
Earth’s gravity field has been expected this question has  
arisen as well.

3	 Numerical methods avoiding numerical 
problems of the spherical harmonics

The topic of a proper representation of real numbers in a 
computer arrived with the first computational problems. 
Among several possibilities for the representation of real 
numbers, FPA based computation became standard prac­
tice since mid 1950s. During the subsequent two decades 
each computer manufacturer designated its own FPA. This 
caused inconsistent results when a program was executed 
on different machines. In order to retain the portability of 
software, unification of the FPA proposals was required. 
Under the patronage of the Institute for Electrical and 
Electronics Engineers (IEEE) the first binary FPA standard 
(IEEE Computer Society 1985) was introduced. Later on 
radix-independent FPA standard (IEEE Computer Society 
1987) was provided in order to support decimal floating 
point machines. A deep revision of the former standards 
lead to an up-to-date standard formulation (IEEE Com­
puter Society 2008) based upon recent developments in 
computer science.

Generally FPA is based on exponential notation in 
which a real number x is expressed as (Overton 2001)

,1 1Ex S B S B= ± × ≤ < −  ,	 (7)

where S represents the significant (also called mantissa), 
B stands for the base and E is the exponent. A computer 
word representing a real number has the form of a bit 
sequence which can be divided into the sign, significant 
and exponent fields. One bit is required for the sign be­
cause only two values (positive or negative) are expected. 

The extent of the significant and exponent fields differs 
depending on the FPA format. In (IEEE Computer Society 
2008) three binary and two decimal FPA basic formats 
are specified. However, we experience incomplete imple­
mentation of the decimal FPA basic formats in available 
mathematical libraries. Thus only binary FPA basic for­
mats (single, double and quadruple) will be considered. 
Their important characteristics such as total number of 
bits, number of bits for the significant and exponent 
fields, range of the exponential values and of real num­
bers are summarized in Tab. 1. It is evident that the cur­
rent FPA standard allows the magnitudes of real numbers 
to vary from several tens of orders in the single format 
up to several thousands of orders in the quadruple for­
mat. However, limitations of the FPA formats have to be 
kept in mind. Below the smallest number only zero is 
considered and the underflow problem occurs. Above the 
largest number NaN (Not a Number) or ± ∞ exceptions 
lead to the overflow problem. A FPA format is defined 
not only by the range but also by the precision. Preci­
sion of FPA formats can be expressed in terms of the 
machine epsilon (representing a gap between one and 
the next floating point number) or by the number of 
significant digits. Machine epsilon and number of sig­
nificant digits for single, double and quadruple binary 
FPA basic formats are summarized in Tab. 2. Individual 
FPA formats are often resolved in this context, there­
fore one is confronted with the terms single, double and  
quadruple precision.

Full capability of the FPA standard requires its im­
plementation. Processor manufacturers are responsible 

Tab. 1: Binary FPA basic formats and their characteristics (Emin and Emax stand for the minimum and maximum values of 
the exponent; approximate evaluation of the smallest and largest numbers in decimal format is listed).

FPA format Total number  
of bits

Exponent  
bits

Significant  
bits

Emin / Emax smallest/largest  
numbers

Single   32   8   23 –126 / 127 ±2–126 / ±2127

(±10–38 / ±1038)

Double   64 11   52 –1022 / 1023 ±2–1022 / ±21023

(±10–308 / ±10308)

Quadruple 128 15 112 –16382 / 16383 ±2–16382 / ±216383

(±10–4932 / ±104932)

Tab. 2: Precision of binary FPA basic formats (approximate 
evaluation of the machine epsilon in decimal format is 
considered).

FPA format Machine epsilon Significant digits

Single 2–23 (10–7)   7

Double 2–52 (10–16) 16

Quadruple 2–112 (10–34) 34
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for hardware implementation. Simple mathematical op­
erations on real numbers such as addition, subtraction, 
multiplication and division are performed directly by a 
processor. This allows considerable saving of computa­
tional time. Software developers involve FPA standard in 
compilers and mathematical libraries enabling software 
portability. However, implementation of FPA standard 
represents a complex problem which may take several 
years. Therefore more flexible extended-range arithme­
tic and arbitrary precision libraries have been developed, 
using the same principles as described for FPA standard. 
The extended-range arithmetic library is a collection of 
mathematical functions and routines for programming 
with a separate storage location for the exponent of a 
real number. An arbitrary precision library may be de­
fined in a similar way. However, varying range of real 
numbers is achieved by direct choice of the total number 
of bits by which a real number is represented and math­
ematical operations are performed. Due to this flexible 
representation of real numbers hardware implementation 
of the extended-range arithmetic and arbitrary precision  
libraries in processors cannot be expected causing con­
siderable growth of computational time.

Numerical methods to avoid numerical problems with 
spherical harmonics are based on the choice of a more 
suitable FPA format defined by standardized, extend­
ed-range arithmetic or by arbitrary precision libraries. 
Geodetic contributions addressing numerical problems 
of spherical harmonics have preferred standardized FPA 
formats. It is also logical that the FPA format with the 
highest total number of bits has been selected in geo­
detic applications. For example in the 1980s, shortly 
before the first FPA standard, limitations of the single 
format were discussed by Tscherning and Poder (1982) 
and Melvin (1985). A decade later standardized double 
format deserved attention for the same reason (Wenzel 
1998, Holmes and Featherstone 2002a, b, Holmes 2003). 
Quadruple format is specified in the current FPA standard 
with consequent applications in recent studies (Petrovs­
kaya and Vershkov 2008, Fantino and Casotto 2009). 
The quadruple format safely covers actual demands in 
the determination of the Earth’s gravity field using SHEs. 
Extended-range arithmetic has also been applied to avoid 
numerical problems of spherical harmonics (Lozier and 
Smith 1981, Smith et al. 1981, Olver and Smith 1983, 
Nesvatba 2008). By this approach SHEs may be evalu­
ated up to an arbitrary degree and order at the price of 
much higher computational time (Wittwer et al. 2008). 
On the other hand, the possibilities of arbitrary precision 
libraries (Brendt 1978, http://www.mpfr.org) have never 
been extensively studied in the context of the numerical 
problems of the spherical harmonics.

4	 Algebraic methods avoiding numerical 
problems of spherical harmonics

Instead of relying on an extended range of real numbers 
in numerical methods, attenuation factors of the spheri­
cal harmonics are sought in algebraic methods. Two al­
gebraic approaches to avoid numerical problems of the 
spherical harmonics are selected. Normalized and scaled 
equivalents of the spherical harmonics are defined and 
compared with those defined in section 2. Notions related 
to the FPA introduced in section 3 are used routinely. The 
expression “unnormalized spherical harmonics” refers to 
those defined by Eqs. (2) and (3).

4.1	 Gravitational potential in a series of  
normalized spherical harmonics

Overflow problems may occur for unnormalized spheri­
cal harmonics of higher degrees and orders. Existence 
of a number dependent on degree and order by which 
the unnormalized spherical harmonics are multiplied in 
order to attenuate the range of their magnitudes may be 
intuitively supposed. Indeed such a number can be found 
applying the norm operator well known from functional 
analysis. Let us introduce the normalized spherical har­
monics Rn,m (θ, λ) and Tn,m (θ, λ). Suppose that the average 
of any squared normalized spherical harmonic over a unit 
sphere σ is unity, i. e. (Hofmann-Wellenhof and Moritz 
2005, Eq. 1‑92)
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and in compliance with Eqs. (2) and (3) the normalized 
spherical harmonics can be defined as follows (ibid., 
Eq. 1‑95)
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From Eq. (11), the square root term represents the de­
sired number dependent on degree and order (thereafter 
denominated as normalization factor), therefore the as­
sumption of its existence has been proved. In Eq. (11), 
Pn,m (θ) are the normalized ALFs and δm,0 represents Kro­
necker’s delta symbol. Also the transition between the 
unnormalized and normalized spherical harmonics is 
provided by this equation.

In order to avoid numerical problems of the unnormal­
ized spherical harmonics, normalization factors have to 
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be taken into account in recursive formulae for the ALFs. 
Considering normalization factors in Eqs. (4) – (6), recur­
sive formulae for the normalized ALFs are obtained in the 
following form (e. g., Colombo 1981)

( ) ( )0,0 1,11, 3P P u= =θ θ  ,	 (12)
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(14)

Finally the gravitational potential in the series of the nor­
malized spherical harmonics is expressed as
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Comparing Eqs. (1) and (15), it can be seen that the SHE 
has slightly changed. Normalized spherical harmon­
ics involve normalization factors for all degrees and 
orders. In order to preserve Eq. (1) valid, geopotential 
coefficients have to be divided by these factors. There­
fore in Eq. (15), the so called normalized geopotential 

coefficients have been introduced by the symbols Cn,m  
and Sn,m .

The normalization factors reduce numerical problems. 
In Fig. 3, the logarithm of the normalized spherical har­
monics is illustrated for the selected spherical colatitudes. 
It is immediately evident that the magnitudes cover only 
a few tens of orders for colatitudes between 45° and 90°. 
The range of their magnitudes is increasing towards the 
poles. Directly at the poles only zeros for sectorial and 
tesseral normalized ALFs can be found when the loga­
rithm is not defined. In comparison with Fig. 2 we ob­
serve completely different patterns. The logarithm of the 
normalized ALFs reaches negative values indicating very 
small numbers close to zero. Introduction of the normal­
ization factor turns the overflow problem into its under­
flow counterpart. While the range of magnitudes of un­
normalized ALFs increases towards the equatorial plane, 
the range of magnitudes of normalized ALFs increases 
towards the poles. The unnormalized ALFs in Fig. 2 reach 
almost 200 orders of magnitudes for the maximum de­
gree of the SHE Nmax = 100 . A similar range of magni­
tudes for the normalized ALFs occurs at the maximum 
degree of the SHE Nmax = 360 . Therefore we may obtain 
more detailed features of the Earth’s gravity field. In­
deed, while unnormalized spherical harmonics allowed 
SHEs approximately up to Nmax = 30 (Rapp 1997), their 
normalization provided SHEs up to degree and order 360 
(Lemoine et al. 1998). Probably for this reason normal­
ized spherical harmonics became convention in the de­
termination of the Earth gravity field. We also note that 
state-of-the-art GGMs are composed of purely normal­
ized geopotential coefficients.

Fig. 3: 
Graphical repre­
sentation of 

( )10 ,log n mP θ  . 
Selected spherical 
colatitudes are  
depicted in each 
panel. Magnitude  
is indicated by  
color scale.
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4.2	 Gravitational potential in a series of  
scaled spherical harmonics

The values of the normalized spherical harmonics tend to 
zero. Towards the poles the values become smaller and 
underflow problems may occur for a certain degree and 
order. The origin of this behaviour is hidden in Eq. (13), 
by which sectorial ALFs are generated. Recursive compu­
tation in this equation requires evaluation of um which 
tends to zero especially when u → 0 (θ → 0°). It is there­
fore natural to multiply the recursive formulae (12) – (14) 
by an inverse of um in order to avoid possible underflow 
problems. We thus obtain the scaled ALFs which can be 
evaluated by the following recursive formulae (Holmes 
and Featherstone 2002a, Holmes 2003)
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Correspondingly scaled spherical harmonics are intro­
duced in the form

( ) ( ),
, , cosn m

n m m

P
R m

u
=

θ
θ λ λ ,	 (19)
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T m
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θ
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We note that the expression of the gravitational po­
tential by a series of scaled spherical harmonics is not 
straightforward. For normalized spherical harmonics 
the normalization factor depends on degree and order. 
The presence of its inverse in the normalized geopoten­
tial coefficients Cn,m and Sn,m preserves the validity of 
Eq. (1). However, the additional factor 1 / um introduced 
by the scaled spherical harmonics in Eqs. (19) and (20), 
depends also on the position of an evaluation point. If 
we multiply the normalized geopotential coefficients by 
um , we preserve the validity of Eq. (1). But the normal­
ized geopotential coefficients become dependent on the 
position, which is not reasonable. Fortunately position 
independent normalized geopotential coefficients and the 
validity of Eq. (1) can be accomplished by an algorithm 
which is known as Horner’s scheme (see, e. g., Harris and 
Stöcker 1998). According to Horner’s scheme the follow­

ing expression for the gravitational potential in the series 
of scaled spherical harmonics can be found
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where
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(22)

In Eq. (22), partial sums of order m are computed for 
the gravitational potential using the scaled spherical har­
monics and normalized geopotential coefficients. Conse­
quently rescaling is performed in Eq. (21) by which the 
resulting value of the gravitational potential is evaluated.

We now consider numerical aspects of the scaled 
spherical harmonics. The graphical representation of 
the scaled ALFs in Fig. 4 reveals an increasing range of 
magnitudes towards the poles. At the poles, the scaled 
spherical harmonics reach their highest range of mag­
nitudes with increasing degree and order. We note from 
Fig. 4 that scaled ALFs are not exactly equal to zero  
at the equator. Assuming the maximum degree of the 
SHE Nmax = 1000 more than 200 orders of magnitudes  
can be observed. For the normalized spherical harmon­
ics in Fig. 3 comparable amount of orders has been 
reached at Nmax = 360 . Evidently further improvement 
of numerical problems has been achieved by the scaled 
spherical harmonics. From the numerical point of view, 
by introducing the scaled spherical harmonics the un­
derflow problem has been reversed again to an overflow  
problem.

Originally, the concept of scaled spherical harmonics 
was introduced by Tschering and Poder (1982) and inde­
pendently by Libbrecht (1985). However, it did not attract 
special attention until ultra high SHEs (Nmax > 2000) were 
required. This concept has been revisited by Holmes and 
Featherstone (2002a, b) and Holmes (2003) and lead to 
first ultra high SHEs provided by synthetic Earth grav­
ity models up to Nmax = 2160 (Haagmans 2000, Novák 
et al. 2001). Recently a significant improvement in the 
resolution of the Earth gravity field has been achieved 
by the EGM2008 (Pavlis et al. 2008). Normalized geo­
potential coefficients of this model are available up to 
Nmax = 2190 corresponding to the maximum spatial resolu- 
tion 5‘ × 5‘.
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5	 Numerical experiment

It remains to be decided if these methods introduce limits 
in terms of the maximum spatial resolution of the Earth’s 
gravity field. We need to determine the maximum pos­
sible degree of the spherical harmonics for which over­
flow or underflow problems occur. This may be done by 
a detailed analysis of the recursive formulae for the ALFs. 
We have decided to do it in a computational way because 
this strategy allows independent validation of an imple­
mentation of the current FPA standard.

For the purpose of the numerical experiment three in­
dependent source codes have been written in program­
ming language C (Kernighan and Ritchie 1988). In each 
source code different types of ALFs (i. e. unnormalized, 
normalized and scaled) have been considered according 
to the recursive formulae defined. Computation of the 
three types of the ALFs has been performed up to degree 
and order 100000 in the range of spherical colatitudes 
θ ∈ 〈0.1°, 90°〉 . During the computation, occurrence of 
overflow or underflow problems has been checked by 

macros of the mathematical library provided by program­
ming language C. We tested unnormalized and scaled 
ALFs for occurrence of overflow, and the normalized 
ALFs for occurrence of underflow. When these problems 
appear, the minimum of the actual degree and order of 
the ALFs has been considered as the maximum possi­
ble degree for the given spherical colatitude. The same 
procedure has been followed in single, double and qua­
druple formats. The numerical experiments were made 
on a computer with x86 architecture in a Linux operat­
ing system. Source codes have been compiled by pub­
licly available GNU Compiler Collection in version 4.4.3  
(http://gcc.gnu.org). We note that according to our first 
plan binary and decimal FPA basic formats defined in 
(IEEE Computer Society 2008) have been considered in 
the numerical experiment. However, our experience has 
shown incomplete software implementation for decimal 
FPA basic formats. Definition of variables as decimal 
types in programming language C has not been recog­
nized after compilation of the source codes. In addition 
macros testing overflow or underflow problems have not 

Fig. 4: 
Graphical repre­
sentation of 

( ),
10log n m

m

P

u

θ
 . 

Selected spherical 
colatitudes are  
depicted in each 
panel. Magnitude  
is indicated by  
color scale.
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been provided in mathematical library. For these reasons 
only binary FPA basic formats have been considered in 
the numerical experiment.

All results of the numerical computations are summa­
rized in Fig. 5 and in Tab. 3. In Fig. 5, the occurrence of 
overflow or underflow problems for corresponding types 
of the ALFs and FPA format is presented as a function of 
spherical colatitude. We immediately observe a similar 
behavior of the curves for the three graphs with different 
FPA format. By comparing each graph to another one 
we can see that the corresponding curve is shifted verti­
cally by a certain value. Extension of the range of real 
numbers, i. e. supposing more precise binary FPA format, 
the maximum degree of the ALFs is increasing by several 
tens or even several hundred orders of magnitude. Let us 
now focus on the interpretation according to the type of 
the ALFs. Considering unnormalized ALFs, the maximum 
degree for which overflow problems occur is decreasing 
towards the equatorial plane with only a slight change in 

the range θ ∈ 〈15°, 90°〉 . Therefore a similar pattern for 
the selected spherical latitudes is visible in Fig. 2. Intro­
ducing normalization factors, the maximum degree indi­
cating underflow problems increases towards the equa­
torial plane. Close to the poles a strong decrease of the 
maximum degree even below the values corresponding 
to the unnormalized ALFs can be seen. Jekeli et al. (2007) 

Tab. 3: Minimum values corresponding to each curve 
plotted in Fig. 5.

FPA format
Single Double Quadruple

Spherical harmonics

Unnormalized   29   151   1606

Normalized   14   112   1789

Scaled 184 1475 23599

Fig. 5: 
Occurrence of over­
flow or underflow 
problems for the 
ALFs as a function  
of spherical colati­
tude:  
a) single, b) double, 
c) quadruple binary 
FPA basic format.
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have assigned such a behavior as the pole singularity 
of the recursion formulae (12) – (14). However, the pole 
singularity disappears by introducing the scaled ALFs as 
seen in Fig. 5. In this case, the maximum degree indicat­
ing an overflow problem increases towards the equatorial 
plane. On the other hand only a slight change in the range 
θ ∈ 〈0°, 30°〉 is visible. Approaching the equatorial plane 
the curves representing normalized and scaled ALFs co­
incide. Usage of the scaled ALFs should be superior when 
the highest possible degree of SHE is required.

Interesting comparisons can be observed from Tab. 3 
which contains the minimum values corresponding to 
each curve plotted in Fig. 5. Assuming unnormalized 
ALFs, SHEs of low and medium frequencies for single 
and double format up to degree 29 and 151, respectively, 
can be evaluated. However, in the case of quadruple for­
mat higher frequencies of the Earth’s gravity field within 
the maximum degree exceeding the value 1600 can be 
achieved. According to the results in Fig. 5 and Tab. 3, 
the preference of the normalized ALFs is affected by their 
pole singularity. Neglecting this fact, normalized spheri­
cal harmonics should be superior to their unnormalized 
equivalent. On the other hand it is clear that scaled spher­
ical harmonics overrun the previous two types by one 
order of the maximum degree of the SHE. Supposing qua­
druple format, SHEs up to degree and order 23599 may be 
evaluated which is even beyond the present possibilities 
in geodesy. Let us also mention that assuming the scaled 
spherical harmonics and quadruple format an identical 
value of the maximum degree has been mentioned by 
Jekeli et al. (2007). It is worth mentioning that another 
improvement of the maximum degree can be reached. 
As we have already shown in sections 2 and 4 spherical 
harmonics lead to overflow or underflow problems ac­
cording to their type. In other words exponents of their 
magnitudes are having only positive or negative values. 
By setting initial values in an opposite direction on a 
numerical axis the maximum degree of the SHEs can be 
doubled. This simple manipulation was used by Wenzel 
(1998) who discussed the possibility of ultra high SHEs 
using normalized spherical harmonics.

6	 Conclusions

In the present contribution, numerical problems of the 
spherical harmonics have been discussed. Evaluation of 
the unnormalized spherical harmonics leads to overflow 
problems when a high resolution Earth gravity field is 
desired. In general these problems can be avoided by nu­
merical and algebraic methods. In numerical methods the 
range of real numbers is simply extended according to 
the principles of the FPA. At present three binary and two 
decimal FPA basic formats are provided by the IEEE Com­
puter Society (2008). Single, double and quadruple binary 

FPA basic formats are well supported. In addition, these 
formats are implemented in the standard mathemati­
cal library of the programming language C and in GNU 
Compiler Collection. Therefore all of the standard binary 
FPA basic formats may be routinely used for the purpose 
of the determination of the Earth’s gravity field. On the 
other hand, decimal FPA basic formats lack implemen­
tation in the mathematical library of the programming 
language C. Alternative numerical methods are based on 
the exploitation of the extended-range arithmetic and 
arbitrary precision libraries. Significant advantage of the 
extended-range arithmetic is the evaluation of extremely 
high degree and order SHEs. Comparing to the standard­
ized FPA formats, computational time increases rapidly. 
Possibilities of arbitrary precision libraries have not yet 
been studied extensively in geodesy. Attenuation fac­
tors of the spherical harmonics are sought in algebraic 
methods. Supposing the global average of the normal­
ized spherical harmonics equal to unity, normalization 
factors dependent on degree and order can be found. 
Despite the underflow problem, especially approaching 
the poles, normalized spherical harmonics became con­
ventional in geodesy. The pole singularity disappears by 
introducing scaled spherical harmonics leading to an 
overflow problem. However, since attenuation factors 
depend on the spherical colatitude, the final evaluation 
of the gravitational potential has to be performed by Hor- 
ner’s scheme.

Assuming binary FPA basic formats, the limits of 
the numerical and algebraic methods have been tested 
by numerical experiments. Based on the occurrence of 
overflow and underflow problems in programming lan­
guage C the maximum possible degrees of the spherical 
harmonics have been searched depending on the spheri­
cal colatitude. Extension of the range of the binary FPA 
basic format allows increasing of the maximum degree by 
one order for all types of the spherical harmonics. How­
ever, scaled spherical harmonics are superior to their un­
normalized and normalized equivalents by an additional 
order of the maximum degree. When quadruple format is 
considered, scaled spherical harmonics can be evaluated 
up to degree and order 23599. Setting the initial values 
of the spherical harmonics in an opposite direction com­
pared to their numerical problems, the maximum possible 
degree can be even doubled.

Despite of the numerical problems, many improve­
ments in the knowledge of the Earth’s gravity field have 
been achieved due to the spherical harmonics. It will be 
interesting to observe future progress in the modeling of 
the Earth’s gravity field by this simple mathematical tool. 
Available computer facilities and simple algebraic op­
erations allow us to consider extremely high SHEs even 
above degree 20000. Such a limit is sufficient enough to 
cover practical problems in geodesy and geophysics.
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